Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
EClinicalMedicine ; 58:101874-101874, 2023.
Article in English | EuropePMC | ID: covidwho-2262611

ABSTRACT

Background Post-COVID syndrome is a severe long-term complication of COVID-19. Although fatigue and cognitive complaints are the most prominent symptoms, it is unclear whether they have structural correlates in the brain. We therefore explored the clinical characteristics of post-COVID fatigue, describe associated structural imaging changes, and determine what influences fatigue severity. Methods We prospectively recruited 50 patients from neurological post-COVID outpatient clinics (age 18–69 years, 39f/8m) and matched non-COVID healthy controls between April 15 and December 31, 2021. Assessments included diffusion and volumetric MR imaging, neuropsychiatric, and cognitive testing. At 7.5 months (median, IQR 6.5–9.2) after the acute SARS-CoV-2 infection, moderate or severe fatigue was identified in 47/50 patients with post-COVID syndrome who were included in the analyses. As a clinical control group, we included 47 matched multiple sclerosis patients with fatigue. Findings Our diffusion imaging analyses revealed aberrant fractional anisotropy of the thalamus. Diffusion markers correlated with fatigue severity, such as physical fatigue, fatigue-related impairment in everyday life (Bell score) and daytime sleepiness. Moreover, we observed shape deformations and decreased volumes of the left thalamus, putamen, and pallidum. These overlapped with the more extensive subcortical changes in MS and were associated with impaired short-term memory. While fatigue severity was not related to COVID-19 disease courses (6/47 hospitalised, 2/47 with ICU treatment), post-acute sleep quality and depressiveness emerged as associated factors and were accompanied by increased levels of anxiety and daytime sleepiness. Interpretation Characteristic structural imaging changes of the thalamus and basal ganglia underlie the persistent fatigue experienced by patients with post-COVID syndrome. Evidence for pathological changes to these subcortical motor and cognitive hubs provides a key to the understanding of post-COVID fatigue and related neuropsychiatric complications. Funding 10.13039/501100001659Deutsche Forschungsgemeinschaft (DFG) and German Ministry of Education and Research (BMBF).

2.
EClinicalMedicine ; 58: 101874, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2262612

ABSTRACT

Background: Post-COVID syndrome is a severe long-term complication of COVID-19. Although fatigue and cognitive complaints are the most prominent symptoms, it is unclear whether they have structural correlates in the brain. We therefore explored the clinical characteristics of post-COVID fatigue, describe associated structural imaging changes, and determine what influences fatigue severity. Methods: We prospectively recruited 50 patients from neurological post-COVID outpatient clinics (age 18-69 years, 39f/8m) and matched non-COVID healthy controls between April 15 and December 31, 2021. Assessments included diffusion and volumetric MR imaging, neuropsychiatric, and cognitive testing. At 7.5 months (median, IQR 6.5-9.2) after the acute SARS-CoV-2 infection, moderate or severe fatigue was identified in 47/50 patients with post-COVID syndrome who were included in the analyses. As a clinical control group, we included 47 matched multiple sclerosis patients with fatigue. Findings: Our diffusion imaging analyses revealed aberrant fractional anisotropy of the thalamus. Diffusion markers correlated with fatigue severity, such as physical fatigue, fatigue-related impairment in everyday life (Bell score) and daytime sleepiness. Moreover, we observed shape deformations and decreased volumes of the left thalamus, putamen, and pallidum. These overlapped with the more extensive subcortical changes in MS and were associated with impaired short-term memory. While fatigue severity was not related to COVID-19 disease courses (6/47 hospitalised, 2/47 with ICU treatment), post-acute sleep quality and depressiveness emerged as associated factors and were accompanied by increased levels of anxiety and daytime sleepiness. Interpretation: Characteristic structural imaging changes of the thalamus and basal ganglia underlie the persistent fatigue experienced by patients with post-COVID syndrome. Evidence for pathological changes to these subcortical motor and cognitive hubs provides a key to the understanding of post-COVID fatigue and related neuropsychiatric complications. Funding: Deutsche Forschungsgemeinschaft (DFG) and German Ministry of Education and Research (BMBF).

3.
J Clin Immunol ; 43(5): 869-881, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2282518

ABSTRACT

PURPOSE: Humoral and cellular immune responses were described after COVID-19 vaccination in patients with common variable immunodeficiency disorder (CVID). This study aimed to investigate SARS-CoV-2-specific antibody quality and memory function of B cell immunity as well as T cell responses after COVID-19 vaccination in seroresponding and non-responding CVID patients. METHODS: We evaluated antibody avidity and applied a memory B cell ELSPOT assay for functional B cell recall memory response to SARS-CoV-2 after COVID-19 vaccination in CVID seroresponders. We comparatively analyzed SARS-CoV-2 spike reactive polyfunctional T cell response and reactive peripheral follicular T helper cells (pTFH) by flow cytometry in seroresponding and non-seroresponding CVID patients. All CVID patients had previously failed to mount a humoral response to pneumococcal conjugate vaccine. RESULTS: SARS-CoV-2 spike antibody avidity of seroresponding CVID patients was significantly lower than in healthy controls. Only 30% of seroresponding CVID patients showed a minimal memory B cell recall response in ELISPOT assay. One hundred percent of CVID seroresponders and 83% of non-seroresponders had a detectable polyfunctional T cell response. Induction of antigen-specific CD4+CD154+CD137+CXCR5+ pTFH cells by the COVID-19 vaccine was higher in CVID seroresponder than in non-seroresponder. Levels of pTFH did not correlate with antibody response or avidity. CONCLUSION: Reduced avidity and significantly impaired recall memory formation after COVID-19 vaccination in seroresponding CVID patients stress the importance of a more differentiated analysis of humoral immune response in CVID patients. Our observations challenge the clinical implications that follow the binary categorization into seroresponder and non-seroresponder.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Humans , Memory B Cells , COVID-19 Vaccines , Antibody Affinity , Common Variable Immunodeficiency/therapy , SARS-CoV-2 , Vaccination , Antibodies, Viral
4.
Autoimmun Rev ; 22(5): 103310, 2023 May.
Article in English | MEDLINE | ID: covidwho-2253449

ABSTRACT

G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.


Subject(s)
Autoimmune Diseases , COVID-19 , Humans , Autoantibodies , Autoimmunity , Receptors, G-Protein-Coupled/metabolism
5.
J Med Virol ; 95(2): e28538, 2023 02.
Article in English | MEDLINE | ID: covidwho-2219761

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a broad spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients in a cohort of 231 individuals, of which 161 were COVID-19 patients (72 with mild, 61 moderate, and 28 with severe disease) and 70 were healthy controls. Dysregulated IgG and IgA autoantibody signatures, characterized mainly by elevated concentrations, occurred predominantly in patients with moderate or severe COVID-19 infection. Autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations while stratifying COVID-19 severity as indicated by random forest and principal component analyses. Furthermore, while young versus elderly COVID-19 patients showed only slight differences in autoantibody levels, elderly patients with severe disease presented higher IgG autoantibody concentrations than young individuals with severe COVID-19. This work maps the intersection of COVID-19 and autoimmunity by demonstrating the dysregulation of multiple autoantibodies triggered during SARS-CoV-2 infection. Thus, this cross-sectional study suggests that SARS-CoV-2 infection induces autoantibody signatures associated with COVID-19 severity and several autoantibodies that can be used as biomarkers of COVID-19 severity, indicating autoantibodies as potential therapeutical targets for these patients.


Subject(s)
Autoimmune Diseases , COVID-19 , Aged , Humans , Autoantibodies , Cross-Sectional Studies , SARS-CoV-2 , Immunoglobulin G
6.
Front Immunol ; 13: 981532, 2022.
Article in English | MEDLINE | ID: covidwho-2115313

ABSTRACT

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Autoantibodies , Humans
8.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2058500

ABSTRACT

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.

9.
Dtsch Med Wochenschr ; 147(20): 1320-1330, 2022 10.
Article in German | MEDLINE | ID: covidwho-2050605

ABSTRACT

Post-COVID-Syndrome consists of several pathobiologically different entities, ranging from damage to specific organs to new onset autoimmune diseases. This article focuses on post-COVID courses with the leading symptoms of fatigue and exercise intolerance. This category is also known from other infectious diseases and includes myalgic encephalomyelitis/chronic fatigue syndrome.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/therapy , Humans
10.
Nat Commun ; 13(1): 5104, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2016698

ABSTRACT

A subset of patients has long-lasting symptoms after mild to moderate Coronavirus disease 2019 (COVID-19). In a prospective observational cohort study, we analyze clinical and laboratory parameters in 42 post-COVID-19 syndrome patients (29 female/13 male, median age 36.5 years) with persistent moderate to severe fatigue and exertion intolerance six months following COVID-19. Further we evaluate an age- and sex-matched postinfectious non-COVID-19 myalgic encephalomyelitis/chronic fatigue syndrome cohort comparatively. Most post-COVID-19 syndrome patients are moderately to severely impaired in daily live. 19 post-COVID-19 syndrome patients fulfill the 2003 Canadian Consensus Criteria for myalgic encephalomyelitis/chronic fatigue syndrome. Disease severity and symptom burden is similar in post-COVID-19 syndrome/myalgic encephalomyelitis/chronic fatigue syndrome and non-COVID-19/myalgic encephalomyelitis/chronic fatigue syndrome patients. Hand grip strength is diminished in most patients compared to normal values in healthy. Association of hand grip strength with hemoglobin, interleukin 8 and C-reactive protein in post-COVID-19 syndrome/non-myalgic encephalomyelitis/chronic fatigue syndrome and with hemoglobin, N-terminal prohormone of brain natriuretic peptide, bilirubin, and ferritin in post-COVID-19 syndrome/myalgic encephalomyelitis/chronic fatigue syndrome may indicate low level inflammation and hypoperfusion as potential pathomechanisms.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Adult , Biomarkers , COVID-19/complications , COVID-19/epidemiology , Canada/epidemiology , Fatigue Syndrome, Chronic/complications , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/epidemiology , Female , Germany/epidemiology , Hand Strength , Humans , Male , Pandemics , Prospective Studies , Post-Acute COVID-19 Syndrome
11.
Cells ; 11(15)2022 08 02.
Article in English | MEDLINE | ID: covidwho-1969103

ABSTRACT

A proportion of COVID-19 reconvalescent patients develop post-COVID-19 syndrome (PCS) including a subgroup fulfilling diagnostic criteria of Myalgic encephalomyelitis/Chronic Fatigue Syndrome (PCS/CFS). Recently, endothelial dysfunction (ED) has been demonstrated in these patients, but the mechanisms remain elusive. Therefore, we investigated the effects of patients' sera on endothelia cells (ECs) in vitro. PCS (n = 17), PCS/CFS (n = 13), and healthy controls (HC, n = 14) were screened for serum anti-endothelial cell autoantibodies (AECAs) and dysregulated cytokines. Serum-treated ECs were analysed for the induction of activation markers and the release of small molecules by flow cytometry. Moreover, the angiogenic potential of sera was measured in a tube formation assay. While only marginal differences between patient groups were observed for serum cytokines, AECA binding to ECs was significantly increased in PCS/CFS patients. Surprisingly, PCS and PCS/CFS sera reduced surface levels of several EC activation markers. PCS sera enhanced the release of molecules associated with vascular remodelling and significantly promoted angiogenesis in vitro compared to the PCS/CFS and HC groups. Additionally, sera from both patient cohorts induced the release of molecules involved in inhibition of nitric oxide-mediated endothelial relaxation. Overall, PCS and PCS/CFS patients' sera differed in their AECA content and their functional effects on ECs, i.e., secretion profiles and angiogenic potential. We hypothesise a pro-angiogenic effect of PCS sera as a compensatory mechanism to ED which is absent in PCS/CFS patients.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Biomarkers , COVID-19/complications , Cytokines , Fatigue Syndrome, Chronic/metabolism , Humans , Post-Acute COVID-19 Syndrome
12.
Die Innere Medizin ; : 1-10, 2022.
Article in German | EuropePMC | ID: covidwho-1940214

ABSTRACT

Hintergrund Ein erheblicher Teil der Verläufe des Post-COVID-Syndroms (COVID „coronavirus disease“) erfüllt die Diagnosekriterien für Myalgische Enzephalomyelitis/Chronisches Fatigue-Syndrom (ME/CFS). In den nächsten Jahren muss deshalb mit einer Verdopplung der Zahl der von ME/CFS Betroffenen gerechnet werden. Ziel der Arbeit Darstellung des aktuellen Wissensstands zu ME/CFS. Material und Methoden Unsystematisches Review der Literatur sowie eigener Arbeiten in Forschung und Patient*innenversorgung. Ergebnisse und Schlussfolgerung Bei ME/CFS handelt es sich um eine zumeist infektinduzierte, in der Regel lebenslang persistierende neuroimmunologische Erkrankung mit mindestens 6 Monate anhaltender Fatigue und dem definierenden Kernmerkmal der Belastungsintoleranz („post-exertional malaise“ [PEM]). Darunter versteht man eine nach (auch leichter) Alltagsanstrengung auftretende Verschlechterung der Beschwerden, die meist erst nach mehreren Stunden oder am Folgetag einsetzt, mindestens 14 h nach Belastung noch spürbar ist und oft mehrere Tage (bis Wochen oder länger) anhält. Des Weiteren bestehen bei ME/CFS Schmerzen, Störungen von Schlaf, Denk- und Merkfähigkeit sowie Fehlregulationen von Kreislauf, Hormon- und Immunsystem. Als eigenständige klinische Entität ist ME/CFS von der chronischen Fatigue abzugrenzen, die als Symptom bei ganz unterschiedlichen Erkrankungen auftritt. Die Diagnose ME/CFS wird anhand etablierter internationaler Diagnosekriterien klinisch gestellt und erfordert zum Ausschluss anderer Diagnosen eine sorgfältige Stufendiagnostik. Eine kausale Therapie für ME/CFS ist nicht etabliert, im Vordergrund steht die Linderung der Beschwerden, die Behandlung der oft begleitenden orthostatischen Intoleranz sowie die Unterstützung beim vorausschauenden Energiemanagement („pacing“).

13.
EClinicalMedicine ; 51: 101549, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936334

ABSTRACT

Background: Post-COVID syndrome (PCS) is an important sequela of COVID-19, characterised by symptom persistence for >3 months, post-acute symptom development, and worsening of pre-existing comorbidities. The causes and public health impact of PCS are still unclear, not least for the lack of efficient means to assess the presence and severity of PCS. Methods: COVIDOM is a population-based cohort study of polymerase chain reaction (PCR) confirmed cases of SARS-CoV-2 infection, recruited through public health authorities in three German regions (Kiel, Berlin, Würzburg) between November 15, 2020 and September 29, 2021. Main inclusion criteria were (i) a PCR confirmed SARS-CoV-2 infection and (ii) a period of at least 6 months between the infection and the visit to the COVIDOM study site. Other inclusion criteria were written informed consent and age ≥18 years. Key exclusion criterion was an acute reinfection with SARS-CoV-2. Study site visits included standardised interviews, in-depth examination, and biomaterial procurement. In sub-cohort Kiel-I, a PCS (severity) score was developed based upon 12 long-term symptom complexes. Two validation sub-cohorts (Würzburg/Berlin, Kiel-II) were used for PCS score replication and identification of clinically meaningful predictors. This study is registered at clinicaltrials.gov (NCT04679584) and at the German Registry for Clinical Studies (DRKS, DRKS00023742). Findings: In Kiel-I (n = 667, 57% women), 90% of participants had received outpatient treatment for acute COVID-19. Neurological ailments (61·5%), fatigue (57·1%), and sleep disturbance (57·0%) were the most frequent persisting symptoms at 6-12 months after infection. Across sub-cohorts (Würzburg/Berlin, n = 316, 52% women; Kiel-II, n = 459, 56% women), higher PCS scores were associated with lower health-related quality of life (EQ-5D-5L-VAS/-index: r = -0·54/ -0·56, all p < 0·0001). Severe, moderate, and mild/no PCS according to the individual participant's PCS score occurred in 18·8%, 48·2%, and 32·9%, respectively, of the Kiel-I sub-cohort. In both validation sub-cohorts, statistically significant predictors of the PCS score included the intensity of acute phase symptoms and the level of personal resilience. Interpretation: PCS severity can be quantified by an easy-to-use symptom-based score reflecting acute phase disease burden and general psychological predisposition. The PCS score thus holds promise to facilitate the clinical diagnosis of PCS, scientific studies of its natural course, and the development of therapeutic interventions. Funding: The COVIDOM study is funded by the Network University Medicine (NUM) as part of the National Pandemic Cohort Network (NAPKON).

14.
Inn Med (Heidelb) ; 63(8): 830-839, 2022 Aug.
Article in German | MEDLINE | ID: covidwho-1935749

ABSTRACT

BACKGROUND: A sizable part of post-COVID syndrome meets the diagnostic criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A doubling of cases of ME/CFS within the next years is therefore projected. OBJECTIVES: Presentation of the current state of knowledge on ME/CFS. MATERIALS AND METHODS: Unsystematic review of the literature and of own contributions in research and patient care. RESULTS AND CONCLUSIONS: ME/CFS is a neuroimmunological disease, mostly infection-induced, usually persisting throughout life. Clinically it is characterized by fatigue lasting at least 6 months and the defining core feature of exercise intolerance (post-exertional malaise, PEM). Exercise intolerance is defined as a worsening of symptoms after (even mild) everyday exertion, which usually begins after several hours or on the following day, is still noticeable at least 14 h after exertion, and often lasts for several days (up to weeks or longer). Furthermore, ME/CFS is characterized by pain, disturbances of sleep, thinking and memory, and dysregulation of the circulatory, endocrine, and immune systems. As a separate clinical entity, ME/CFS should be distinguished from chronic fatigue, which occurs as a symptom of a range of very different diseases. The diagnosis of ME/CFS is made clinically using established international diagnostic criteria and requires careful stepwise diagnosis to exclude other diagnoses. A causal therapy for ME/CFS has not been established; the focus is on symptoms relief, treatment of the often accompanying orthostatic intolerance, and assistance with anticipatory energy management (pacing).


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , COVID-19/complications , Fatigue Syndrome, Chronic/diagnosis , Humans , Pain
15.
Front Immunol ; 13: 840126, 2022.
Article in English | MEDLINE | ID: covidwho-1775673

ABSTRACT

Morbidity and mortality of COVID-19 is increased in patients with inborn errors of immunity (IEI). Age and comorbidities and also impaired type I interferon immunity were identified as relevant risk factors. In patients with primary antibody deficiency (PAD) and lack of specific humoral immune response to SARS-CoV-2, clinical disease outcome is very heterogeneous. Despite extensive clinical reports, underlying immunological mechanisms are poorly characterized and levels of T cellular and innate immunity in severe cases remain to be determined. In the present study, we report clinical and immunological findings of 5 PAD patients with severe and fatal COVID-19 and undetectable specific humoral immune response to SARS-CoV-2. Reactive T cells to SARS-CoV-2 spike (S) and nucleocapsid (NCAP) peptide pools were analyzed comparatively by flow cytometry in PAD patients, convalescents and naïve healthy individuals. All examined PAD patients developed a robust T cell response. The presence of polyfunctional cytokine producing activated CD4+ T cells indicates a memory-like phenotype. An analysis of innate immune response revealed elevated CD169 (SIGLEC1) expression on monocytes, a surrogate marker for type I interferon response, and presence of type I interferon autoantibodies was excluded. SARS-CoV-2 RNA was detectable in peripheral blood in three severe COVID-19 patients with PAD. Viral clearance in blood was observed after treatment with COVID-19 convalescent plasma/monoclonal antibody administration. However, prolonged mucosal viral shedding was observed in all patients (median 67 days) with maximum duration of 127 days. PAD patients without specific humoral SARS-CoV-2 immunity may suffer from severe or fatal COVID-19 despite robust T cell and normal innate immune response. Intensified monitoring for long persistence of SARS-CoV-2 viral shedding and (prophylactic) convalescent plasma/specific IgG as beneficial treatment option in severe cases with RNAemia should be considered in seronegative PAD patients.


Subject(s)
COVID-19 , Interferon Type I , Primary Immunodeficiency Diseases , Antibodies, Viral , COVID-19/therapy , Humans , Immunity, Humoral , Immunization, Passive , RNA, Viral , SARS-CoV-2 , T-Lymphocytes , COVID-19 Serotherapy
16.
J Transl Med ; 20(1): 138, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1759761

ABSTRACT

BACKGROUND: Fatigue, exertion intolerance and post-exertional malaise are among the most frequent symptoms of Post-COVID Syndrome (PCS), with a subset of patients fulfilling criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). As SARS-CoV-2 infects endothelial cells, causing endotheliitis and damaging the endothelium, we investigated endothelial dysfunction (ED) and endothelial biomarkers in patients with PCS. METHODS: We studied the endothelial function in 30 PCS patients with persistent fatigue and exertion intolerance as well as in 15 age- and sex matched seronegative healthy controls (HCs). 14 patients fulfilled the diagnostic criteria for ME/CFS. The other patients were considered to have PCS. Peripheral endothelial function was assessed by the reactive hyperaemia index (RHI) using peripheral arterial tonometry (PAT) in patients and HCs. In a larger cohort of patients and HCs, including post-COVID reconvalescents (PCHCs), Endothelin-1 (ET-1), Angiopoietin-2 (Ang-2), Endocan (ESM-1), IL-8, Angiotensin-Converting Enzyme (ACE) and ACE2 were analysed as endothelial biomarkers. RESULTS: Five of the 14 post-COVID ME/CFS patients and five of the 16 PCS patients showed ED defined by a diminished RHI (< 1.67), but none of HCs exhibited this finding. A paradoxical positive correlation of RHI with age, blood pressure and BMI was found in PCS but not ME/CFS patients. The ET-1 concentration was significantly elevated in both ME/CFS and PCS patients compared to HCs and PCHCs. The serum Ang-2 concentration was lower in both PCS patients and PCHCs compared to HCs. CONCLUSION: A subset of PCS patients display evidence for ED shown by a diminished RHI and altered endothelial biomarkers. Different associations of the RHI with clinical parameters as well as varying biomarker profiles may suggest distinct pathomechanisms among patient subgroups.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Biomarkers , COVID-19/complications , Endothelial Cells , Endothelium , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
17.
Medicina (Kaunas) ; 58(3)2022 Mar 12.
Article in English | MEDLINE | ID: covidwho-1742544

ABSTRACT

Dyspnea, shortness of breath, and chest pain are frequent symptoms of post-COVID syndrome (PCS). These symptoms are unrelated to organ damage in most patients after mild acute COVID infection. Hyperventilation has been identified as a cause of exercise-induced dyspnea in PCS. Since there is a broad overlap in symptomatology with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), causes for dyspnea and potential consequences can be deduced by a stringent application of assumptions made for ME/CFS in our recent review papers. One of the first stimuli of respiration in exercise is caused by metabolic feedback via skeletal muscle afferents. Hyperventilation in PCS, which occurs early on during exercise, can arise from a combined disturbance of a poor skeletal muscle energetic situation and autonomic dysfunction (overshooting respiratory response), both found in ME/CFS. The exaggerated respiratory response aggravating dyspnea does not only limit the ability to exercise but further impairs the muscular energetic situation: one of the buffering mechanisms to respiratory alkalosis is a proton shift from intracellular to extracellular space via the sodium-proton-exchanger subtype 1 (NHE1), thereby loading cells with sodium. This adds to two other sodium loading mechanisms already operative, namely glycolytic metabolism (intracellular acidosis) and impaired Na+/K+ATPase activity. High intracellular sodium has unfavorable effects on mitochondrial calcium and metabolism via sodium-calcium-exchangers (NCX). Mitochondrial calcium overload by high intracellular sodium reversing the transport mode of NCX to import calcium is a key driver for fatigue and chronification. Prevention of hyperventilation has a therapeutic potential by keeping intracellular sodium below the threshold where calcium overload occurs.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , COVID-19/complications , Dyspnea/etiology , Exercise , Fatigue Syndrome, Chronic/etiology , Fatigue Syndrome, Chronic/therapy , Humans , Sodium
18.
Nat Commun ; 13(1): 1220, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1735246

ABSTRACT

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Receptors, G-Protein-Coupled/immunology , Renin-Angiotensin System/immunology , Autoantibodies/blood , Autoimmunity , Biomarkers/blood , COVID-19/blood , COVID-19/classification , Cross-Sectional Studies , Female , Humans , Machine Learning , Male , Multivariate Analysis , Receptor, Angiotensin, Type 1/immunology , Receptors, CXCR3/immunology , SARS-CoV-2 , Severity of Illness Index
19.
Pneumologie ; 75(11): 869-900, 2021 Nov.
Article in German | MEDLINE | ID: covidwho-1392935

ABSTRACT

The German Society of Pneumology initiated the AWMFS1 guideline Post-COVID/Long-COVID. In a broad interdisciplinary approach, this S1 guideline was designed based on the current state of knowledge.The clinical recommendation describes current post-COVID/long-COVID symptoms, diagnostic approaches, and therapies.In addition to the general and consensus introduction, a subject-specific approach was taken to summarize the current state of knowledge.The guideline has an expilcit practical claim and will be continuously developed and adapted by the author team based on the current increase in knowledge.


Subject(s)
COVID-19 , Pulmonary Medicine , COVID-19/complications , Consensus , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
20.
Front Immunol ; 12: 687449, 2021.
Article in English | MEDLINE | ID: covidwho-1332119

ABSTRACT

Despite RT-PCR confirmed COVID-19, specific antibodies to SARS-CoV-2 spike are undetectable in serum in approximately 10% of convalescent patients after mild disease course. This raises the question of induction and persistence of SARS-CoV-2-reactive T cells in these convalescent individuals. Using flow cytometry, we assessed specific SARS-CoV-2 and human endemic coronaviruses (HCoV-229E, -OC43) reactive T cells after stimulation with spike and nucleocapsid peptide pools and analyzed cytokine polyfunctionality (IFNγ, TNFα, and IL-2) in seropositive and seronegative convalescent COVID-19 patients as well as in unexposed healthy controls. Stimulation with SARS-CoV-2 spike and nucleocapsid (NCAP) as well as HCoV spike peptide pools elicited a similar T cell response in seropositive and seronegative post COVID-19 patients. Significantly higher frequencies of polyfunctional cytokine nucleocapsid reactive CD4+ T cells (triple positive for IFNγ, TNFα, and IL-2) were observed in both, seropositive (p = 0.008) and seronegative (p = 0.04), COVID-19 convalescent compared to healthy controls and were detectable up to day 162 post RT-PCR positivity in seronegative convalescents. Our data indicate an important role of NCAP-specific T cells for viral control.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus 229E, Human/physiology , SARS-CoV-2/physiology , Adult , COVID-19 Serological Testing , Cells, Cultured , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Lymphocyte Activation , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL